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Parking on a Two-Way Street



Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we define a
parking process where

> positive cars drive left-to-right, and
> negative cars drive right-to-left.
For a = (1,1,4,4,5), this looks like

When all cars successfully park, we call the tuple a signed parking
function.
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Signatures

Given a signed parking function «, its signature ¥ is the set of
indices at which it has negative preferences. For example, the
elements of SPF, arranged by signature are as follows.

)N « Y o
0 (LY {28 [(2,2)
(1,2) (1,2)
(2,1) (2,1)
{1} | (L,1) | {1,2} | (2,2)
(1,2) (1,2)
(2,1) (2,1)




Signatures

Given a signed parking function «, its signature ¥ is the set of
indices at which it has negative preferences. For example, the
elements of SPF, arranged by signature are as follows.

)N « Y o
0 (LY {28 [(2,2)
(1,2) (1,2)
(2,1) (2,1)
{1} | (L,1) | {1,2} | (2,2)
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Well, that divided nicely... &



Toggle map

We define a family of involutions 7; on the set SPF, that toggle
the direction that car / is driving. That is, the map 7; toggles
whether i is in the signature of a.

1 3 4 8 1 3

naal | OEE
2 5 6 7 4 5 6 7 8
L R L

2
R




Enumeration

Using these toggle maps, we know that the signed parking
functions for each possible signature are equinumerous.

Theorem (Martinez Mori, Harris, W.)
The number of signed parking functions of length n is given by

|SPF,| = 2"|PF,| = 2"(n+1)"" 1.
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There are 16 parking functions in PF3. The symmetric group S3
acts by rearranging the preference vector.
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Classical Parking Spaces

The irreducible representations of S,, are indexed by partitions
A+ n and are denoted S*. For example,
221

RVE=EC)
1220 > W=sED

212

As an S;-representation,

CPF; (5(3>)@5 ® (5(2’”)@5 o (st



Frobenius Character

The Frobenius character is a map

ch : {Sp-representations} — C {sy : A - n}

SAD—)S)\

where we call the vector space spanned by the sy the space of
symmetric functions.
For example,

CPF; = (5(3)>@5 e (5(2,1)>@5 e (5(171»1))
ch(CPF3) = 5s(3) + 55(2,1) + S(1,1,1)

(This way of rewriting things may seem a little silly now, but it will
make some things much easier to handle later)



Frobenius Character

There is another basis hy of symmetric functions for which the
Frobenius character of parking functions has a nice expansion:

h(CPF,) = Krew(\)
AFn
where for A = {1™ 2™} with k parts,

1 n+1
K A) =
rew() n+1<n—|—1—k,m1,m2,...>

is the number of noncrossing set partitions of {1,2,..., n} whose
blocks have sizes given by .
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A Hyperoctahedral Action



Hyperoctahedral Group

The hyperoctahedral group has three main flavors.
/ & \’/
\

ombinatorial: Signed permutations

Algebraic: Generators and relations
Geometric: Type B Weyl group

Because of the geometric flavor, we denote the hyperoctahedral
group by B,.



Signed Permutations

Let<>

={-n—(n-1),...,-1,1,2,...,n}. A bijection
fofn) —(n

> is a signed permutatlon if f(—l) = —f(i) for all i.

An example of such a signed permutation in one-line notation is

21354.



Generators and Relations

The group B, is generated by symbols
» s;for 1 << n—1 (these are the simple transpositions)
» t; for 1 < i < n (these toggle whether the ith position is
negative)

The s; have the same relations as the simple transpositions in S,
and the additional relations involving the t; are

1 if i=j
titj = .
titi  ifiFE]



Hyperoctahedral Action

It turns out that the toggle maps 7; act very much like the
generators t;:

Lemma (Martinez Mori, Harris, W.)
Fora € SPF, and 1 <i,j <n,

o Je ifi=j
) {n(w(a)) i)

Based on this fact, we can use the toggle maps to lift the usual
action of S,, on PF, to an action of B, on SPF,,.



Hyperoctahedral Action

Let o = (1,3,3,4,5). If we want to act on « by the simple
transposition s3, we do the following:

(1,3,3,4,5)
73
(3,1,1,4,5)
s3

(37 174’ 173)

T4
(1,4,2,4,5)

In general, to apply a permutation, we: (i) use toggles to clear out
the signs, (ii) apply the permutation on the positions of the
preferences, and (iii) use toggles to reintroduce signs.



Frobenius Character of SPF,,

Definition
Given pt aand v F b with a4+ b = n, define the signed Kreweras
number Krew(u,v) to be

Krew(p, v Z Krew(a + 3)
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where the sum is over weak compositions « and (3 such that
sort(a) = p, sort(8) = v, and (o + B) F n.
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Frobenius Character of SPF,,

Definition
Given pt aand v F b with a4+ b = n, define the signed Kreweras
number Krew(u,v) to be

Krew(p, v Z Krew(a + 3)
o,

where the sum is over weak compositions « and (3 such that
sort(a) = p, sort(8) = v, and (o + B) F n.

The Frobenius character of a hyperoctahedral representation lies in
a space spanned by two copies of symmetric functions: {sy(x)} and

{sa(y)}-
Theorem (Martinez Mori, Harris, W.)
The Frobenius character of the signed parking space is given by

h(CSPF,) Z Krew (e, v)h,(x)h(y).



Some Open Questions

» Characterize the tuples in SPF,, by inequalities.

» An interpretation for Krew(\, 1) in terms of (type B?)

noncrossing set partitions (currently, we interpret them in
terms of certain decorated Dyck paths).



Thank youl



Signed Dyck Paths

Definition

A signed Dyck path is a Dyck path whose up-steps are labeled with
a sign + or — and an up-step with a positive sign cannot
immediately follow an up-step with a negative sign.

+
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