
On a Two-Way Street:

Inducing Parking Spaces

to the Hyperoctahedral Group

Alexander Wilson

York University

with J. Carlos Martinez Mori and Pamela Estephania Harris

Outline

Parking on a Two-Way Street

Toggle Maps

Parking Spaces

A Hyperoctahedral Action

Section 1

Parking on a Two-Way Street

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Parking on a Two-Way Street

Given a tuple with positive and negative preferences, we de�ne a

parking process where

I positive cars drive left-to-right, and

I negative cars drive right-to-left.

For α = (1, 1, 4, 4, 5), this looks like

When all cars successfully park, we call the tuple a signed parking

function.

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Failing to Park

In this model, there are two ways for cars to fail to park:

Positive cars can drive o� the

right.

α = (2, 2)

Negative cars can drive o� the

left.

α = (1, 1)

Section 2

Toggle Maps

Signatures

Given a signed parking function α, its signature Σ is the set of

indices at which it has negative preferences. For example, the

elements of SPF2 arranged by signature are as follows.

Σ α Σ α

∅ (1, 1) {2} (2, 2)
(1, 2) (1, 2)
(2, 1) (2, 1)

{1} (1, 1) {1, 2} (2, 2)
(1, 2) (1, 2)
(2, 1) (2, 1)

Well, that divided nicely...

Signatures

Given a signed parking function α, its signature Σ is the set of

indices at which it has negative preferences. For example, the

elements of SPF2 arranged by signature are as follows.

Σ α Σ α

∅ (1, 1) {2} (2, 2)
(1, 2) (1, 2)
(2, 1) (2, 1)

{1} (1, 1) {1, 2} (2, 2)
(1, 2) (1, 2)
(2, 1) (2, 1)

Well, that divided nicely...

Toggle map

We de�ne a family of involutions τi on the set SPFn that toggle

the direction that car i is driving. That is, the map τi toggles
whether i is in the signature of α.

Enumeration

Using these toggle maps, we know that the signed parking

functions for each possible signature are equinumerous.

Theorem (Martinez Mori, Harris, W.)

The number of signed parking functions of length n is given by

|SPFn| = 2n|PFn| = 2n(n + 1)n−1.

Section 3

Parking Spaces

Classical Parking Spaces

There are 16 parking functions in PF3. The symmetric group S3
acts by rearranging the preference vector.

111

122 212 221

∼= V ⊕ W

113 131 311

112 121 211

123 132 213 231 312 321

We can understand the structure of this action in a more re�ned

way by turning each orbit into a vector space.

212

122

221

I ~v = 0.5(122) + 0(212) + 0.7(221)

I (1 2).~v = 0(122) + 0.5(212) + 0.7(221)

I V = {a(122) + a(212) + a(221) : a ∈ C}
I W = {a(122) + b(212) + c(221) :

a + b + c = 0}

Classical Parking Spaces

There are 16 parking functions in PF3. The symmetric group S3
acts by rearranging the preference vector.

111

122 212 221

∼= V ⊕ W

113 131 311

112 121 211

123 132 213 231 312 321

We can understand the structure of this action in a more re�ned

way by turning each orbit into a vector space.

212

122

221

I ~v = 0.5(122) + 0(212) + 0.7(221)

I (1 2).~v = 0(122) + 0.5(212) + 0.7(221)

I V = {a(122) + a(212) + a(221) : a ∈ C}
I W = {a(122) + b(212) + c(221) :

a + b + c = 0}

Classical Parking Spaces

There are 16 parking functions in PF3. The symmetric group S3
acts by rearranging the preference vector.

111

122 212 221

∼= V ⊕ W

113 131 311

112 121 211

123 132 213 231 312 321

We can understand the structure of this action in a more re�ned

way by turning each orbit into a vector space.

212

122

221

~v

I ~v = 0.5(122) + 0(212) + 0.7(221)

I (1 2).~v = 0(122) + 0.5(212) + 0.7(221)

I V = {a(122) + a(212) + a(221) : a ∈ C}
I W = {a(122) + b(212) + c(221) :

a + b + c = 0}

Classical Parking Spaces

There are 16 parking functions in PF3. The symmetric group S3
acts by rearranging the preference vector.

111

122 212 221

∼= V ⊕ W

113 131 311

112 121 211

123 132 213 231 312 321

We can understand the structure of this action in a more re�ned

way by turning each orbit into a vector space.

212

122

221

~v

I ~v = 0.5(122) + 0(212) + 0.7(221)

I (1 2).~v = 0(122) + 0.5(212) + 0.7(221)

I V = {a(122) + a(212) + a(221) : a ∈ C}
I W = {a(122) + b(212) + c(221) :

a + b + c = 0}

Classical Parking Spaces

There are 16 parking functions in PF3. The symmetric group S3
acts by rearranging the preference vector.

111

122 212 221

∼= V ⊕ W

113 131 311

112 121 211

123 132 213 231 312 321

We can understand the structure of this action in a more re�ned

way by turning each orbit into a vector space.

212

122

221

~v

I ~v = 0.5(122) + 0(212) + 0.7(221)

I (1 2).~v = 0(122) + 0.5(212) + 0.7(221)

I V = {a(122) + a(212) + a(221) : a ∈ C}

I W = {a(122) + b(212) + c(221) :
a + b + c = 0}

Classical Parking Spaces

There are 16 parking functions in PF3. The symmetric group S3
acts by rearranging the preference vector.

111

122 212 221

∼= V ⊕ W

113 131 311

112 121 211

123 132 213 231 312 321

We can understand the structure of this action in a more re�ned

way by turning each orbit into a vector space.

212

122

221

~v

I ~v = 0.5(122) + 0(212) + 0.7(221)

I (1 2).~v = 0(122) + 0.5(212) + 0.7(221)

I V = {a(122) + a(212) + a(221) : a ∈ C}
I W = {a(122) + b(212) + c(221) :

a + b + c = 0}

Classical Parking Spaces

There are 16 parking functions in PF3. The symmetric group S3
acts by rearranging the preference vector.

111

122 212 221 ∼= V ⊕ W

113 131 311

112 121 211

123 132 213 231 312 321

We can understand the structure of this action in a more re�ned

way by turning each orbit into a vector space.

212

122

221

~v

I ~v = 0.5(122) + 0(212) + 0.7(221)

I (1 2).~v = 0(122) + 0.5(212) + 0.7(221)

I V = {a(122) + a(212) + a(221) : a ∈ C}
I W = {a(122) + b(212) + c(221) :

a + b + c = 0}

Classical Parking Spaces

The irreducible representations of Sn are indexed by partitions

λ ` n and are denoted Sλ. For example,

212

122

221

I V ∼= S (3)

I W ∼= S (2,1)

As an S3-representation,

CPF3 ∼=
(
S (3)

)⊕5
⊕
(
S (2,1)

)⊕5
⊕
(
S (1,1,1)

)

Frobenius Character

The Frobenius character is a map

ch : {Sn-representations} → C {sλ : λ ` n}
Sλ 7→ sλ

where we call the vector space spanned by the sλ the space of

symmetric functions.

For example,

CPF3 ∼=
(
S (3)

)⊕5
⊕
(
S (2,1)

)⊕5
⊕
(
S (1,1,1)

)
ch(CPF3) = 5s(3) + 5s(2,1) + s(1,1,1)

(This way of rewriting things may seem a little silly now, but it will

make some things much easier to handle later)

Frobenius Character

There is another basis hλ of symmetric functions for which the

Frobenius character of parking functions has a nice expansion:

ch(CPFn) =
∑
λ`n

Krew(λ)hλ

where for λ = {1m1 , 2m2 , . . .} with k parts,

Krew(λ) =
1

n + 1

(
n + 1

n + 1− k,m1,m2, . . .

)
is the number of noncrossing set partitions of {1, 2, . . . , n} whose
blocks have sizes given by λ.

Section 4

A Hyperoctahedral Action

Hyperoctahedral Group

The hyperoctahedral group has three main �avors.

Combinatorial: Signed permutations

Algebraic: Generators and relations

Geometric: Type B Weyl group

Because of the geometric �avor, we denote the hyperoctahedral

group by Bn.

Signed Permutations

Let 〈n〉 = {−n,−(n − 1), . . . ,−1, 1, 2, . . . , n}. A bijection

f : 〈n〉 → 〈n〉 is a signed permutation if f (−i) = −f (i) for all i .

An example of such a signed permutation in one-line notation is

21354.

Generators and Relations

The group Bn is generated by symbols

I si for 1 ≤ i ≤ n − 1 (these are the simple transpositions)

I ti for 1 ≤ i ≤ n (these toggle whether the ith position is

negative)

The si have the same relations as the simple transpositions in Sn,
and the additional relations involving the ti are

ti tj =

{
1 if i = j

tj ti if i 6= j

ti sj = sj tsj (i)

Hyperoctahedral Action

It turns out that the toggle maps τi act very much like the

generators ti :

Lemma (Martinez Mori, Harris, W.)

For α ∈ SPFn and 1 ≤ i , j ≤ n,

τi (τj(α)) =

{
α if i = j

τj(τi (α)) if i 6= j
.

Based on this fact, we can use the toggle maps to lift the usual

action of Sn on PFn to an action of Bn on SPFn.

Hyperoctahedral Action

Let α = (1, 3, 3, 4, 5). If we want to act on α by the simple

transposition s3, we do the following:

(1, 3, 3, 4, 5)

(3, 1, 1, 4, 5)

(3, 1, 4, 1, 5)

(1, 4, 2, 4, 5)

τ3

s3

τ4

In general, to apply a permutation, we: (i) use toggles to clear out

the signs, (ii) apply the permutation on the positions of the

preferences, and (iii) use toggles to reintroduce signs.

Frobenius Character of SPFn

De�nition
Given µ ` a and ν ` b with a + b = n, de�ne the signed Kreweras

number Krew(µ, ν) to be

Krew(µ, ν) =
∑
α,β

Krew(α + β)

where the sum is over weak compositions α and β such that

sort(α) = µ, sort(β) = ν, and (α + β) ` n.

The Frobenius character of a hyperoctahedral representation lies in

a space spanned by two copies of symmetric functions: {sλ(x)} and
{sλ(y)}.
Theorem (Martinez Mori, Harris, W.)

The Frobenius character of the signed parking space is given by

ch(CSPFn) =
∑

|µ|+|ν|=n

Krew(µ, ν)hµ(x)hν(y).

Frobenius Character of SPFn

De�nition
Given µ ` a and ν ` b with a + b = n, de�ne the signed Kreweras

number Krew(µ, ν) to be

Krew(µ, ν) =
∑
α,β

Krew(α + β)

where the sum is over weak compositions α and β such that

sort(α) = µ, sort(β) = ν, and (α + β) ` n.

The Frobenius character of a hyperoctahedral representation lies in

a space spanned by two copies of symmetric functions: {sλ(x)} and
{sλ(y)}.

Theorem (Martinez Mori, Harris, W.)

The Frobenius character of the signed parking space is given by

ch(CSPFn) =
∑

|µ|+|ν|=n

Krew(µ, ν)hµ(x)hν(y).

Frobenius Character of SPFn

De�nition
Given µ ` a and ν ` b with a + b = n, de�ne the signed Kreweras

number Krew(µ, ν) to be

Krew(µ, ν) =
∑
α,β

Krew(α + β)

where the sum is over weak compositions α and β such that

sort(α) = µ, sort(β) = ν, and (α + β) ` n.

The Frobenius character of a hyperoctahedral representation lies in

a space spanned by two copies of symmetric functions: {sλ(x)} and
{sλ(y)}.
Theorem (Martinez Mori, Harris, W.)

The Frobenius character of the signed parking space is given by

ch(CSPFn) =
∑

|µ|+|ν|=n

Krew(µ, ν)hµ(x)hν(y).

Some Open Questions

I Characterize the tuples in SPFn by inequalities.

I An interpretation for Krew(λ, µ) in terms of (type B?)

noncrossing set partitions (currently, we interpret them in

terms of certain decorated Dyck paths).

Thank you!

Signed Dyck Paths

De�nition
A signed Dyck path is a Dyck path whose up-steps are labeled with

a sign + or − and an up-step with a positive sign cannot

immediately follow an up-step with a negative sign.

	Parking on a Two-Way Street
	Toggle Maps
	Parking Spaces
	A Hyperoctahedral Action

